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Abstract. Ttansfer-matrix-based calculations of the defect energy in two-dimensional Ising 
spin glasses yield a T = 0 exponent y which depends on the spin quantum number S. For 
a sufficiently large S there is a passibility of freezing at finite T in two dimensions. The 
Emelyawendsen version of Migdal-Kadanoff recursion formula is used to investigate 
the S = 1 two- and three-dimensional spin glasses at finite temperatures. The phase 
diagsam on the T-single-ion anisotropy plane allows for no re-entrancj predicted by the 
mean-field approach. 

1. Introduction 

Years of research on frustrated spin systems (see, e.g. Binder and Young 1986) have 
led to a basic understanding of the equilibrium properties of the S = 4 Ising and of 
the classical Heisenberg spin glasses. Much less is known, however, about quantum 
frustrated systems and about the king systems with a general spin quantum number 
S. Experimentally studied spin glasses often consist of S > 4 spins and such systems 
may exhibit Ising-like anisotropy. 

In this paper, we focus on the T = 0 scaling properties of the S > 4 systems 
described by the Hamiltonian 

H = -  - x J i j S i S j + E A i  Si2  
( i j )  

where the spin Si takes on values -S, -S + 1,. . . , S - 1, S and the exchange 
couplings involve nearest neighbours. We consider the case of a Gaussian spin glass 
(GSG), when the couplings are Gaussian distributed with a zero mean and a dispersion 
Jo. and of a bimodal spin glass (BSG), when the probability to find a coupling Ji, 
is given by P ( J i j )  = [6(J i j  - J o )  + 6(Jij + J 0 ) ] / 2 .  In (l), A i  denotes the local 
anisotropy constant. In most of the paper we consider anisotropy to be uniform 
Ai = A. 

The S = 1 model has already been studied within the mean-field theory (Ghatak 
and Sherrington 1977, Lage and de Almeida 1982, Mottishaw and Sherrington 1985). 
In particular, it has been found that for some range of A the paramagnet-spin-glass 
transition becomes f i t  order and re-entrancy phenomena take place. 

5 On leave from: Thai Nguyen Technical Institute, Vietnam. 
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The questions we ask in this paper are as follows: (a) what is the phase diagram 
corresponding to (l), (b) what is the effect of the spin quantum number S on the 
lower critical dimensionality of the system. 

We seek answers to these questions by determining the T = 0 scaling properties 
of the two-dimensional (ZD) Ising systems with S < 3 and by calculating effective cou- 
pling constants within the Migdal-Kadanoff renormalization group (MKRG) scheme 
for two- and three-dimensional S = 1 systems. The T = 0 scaling results are based 
on the numericaiiy exact transfer-matrix metinod. Tine MKRG scheme, on the other 
hand, is approximate but it allows one to study much larger length scales and to 
consider essentially arbitrary space dimensionalities. 

The basic concept of the T = 0 scaling theory (Banavar and Cieplak 1982, Bray 
and Moore 1984, McMillan 1984, Bray and Moore 1987, Bray 1988) is that of a scaling 
stiffness or a scale-dependent coupling energy, 6E( L ) .  This coupling is determined 
by studying the sensitivity to boundary conditions of the ground-state energy of finite 
blocks of length L. 6E( L )  is a characteristic measure of that sensitivity; it is defined 
in section 2. In the MKRG scheme (Migdall976, Kadanoff 1976, Southern and Young 
1977), on the other hand, one studies moments of the probability distribution of the 
exchange couplings characterizing systems at length scale L. In the spin-glass phase, 
the second moment, or the dispersion, uJ( L ) ,  has the dominating L-dependence and 
SewpS z a chxacterigi~ memure of the mup!Lng strengthl 

In the ordered phase at T = 0 both 6 E ( L )  and u , ( L )  scale as 

6 E ( L )  o,(Lj - L Y .  (2) 

For systems below the lower critical dimensionality (LCD), y is negative and a phase 
transition occurs at T = 0. Above the LCD, on the other hand, y is positive and the 
transition occurs at a non-zero T,. The marginal case, y = 0, corresponds to the 
system being at its LCD. 

In this paper, we study the properties of y as a function of S. The summary 
of our transfer-matrix-based findings for D = 2 and A = 0 is shown in figure 1. 
We see that tendencies towards ordering generally increase with S ,  i.e. the effects 
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Figure 1. The T = 0 exponent y obtained by the transfer matrix-method for WO- 
dimensional spin glasses with the spin quantum number S. The anisotropy parameter 
A is set equal to zero. The error bars far systems with the bimodal wuplings are 
comparable to those with the Gaussian wuplings. 
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of frustration get weaker. The lines in figure 1 are merely guides to the eye. In 
fact, the results for the Gaussian system with S 6 3 can also be represented by a 
superposition of two approximately straight lines: one for the half-integer S and the 
other for the integer S. For S = i ,  z ,  and $ we get y = -0.33, -0.21, and -0.11 
respectively. For S = 1, 2, and 3 our results are correspondingly -0.17, -0.13, and 
-0.08. The error bars due to statistics are of order of 0.03. If the extrapolation of 

5 that 2 s2pAratin: 
at a negative value of y is reached) then there is a critical S, above which there is 
a spin-glass ordering in two dimensions. In the half-integer case the ordering would 
then be predicted to arise for S = !, and in the integer case for S = 5, which is 
out of the range found in solid-state systems. However, our results point to possible 
integer-half-integer effects that could also be found in three-dimensional spin glasses. 

0bse.we. that S of 1 see.m3 @ b. sp&!: the bimadz! 2nd C.ansE..ia!! 
distributions give rise to the same y of -0.17. Notice that in the case of 2D 3-state 
Pot& spin glasses y = -0.61 and -0.44 for the Gaussian~ and b ~ o d a l  couplings 
respectively (Banavar and Cieplak 1989). The S dependence of the exponent y is 
also demonstrated by the Migdal-Kadanoff approach. 

We start describing our results in section 2 by giving details of our transfer matrix 
based calculations of 6 E ( L ) .  In section 3 we generalize the EmerySwendsen (Emery 
and Swendsen 1977a, 1977b) version of the MKRG scheme for S > 4 to random S = 1 
systems and present results for the 2D and 3~ spin glasses. In particular, we obtain 
the phase diagram on the T-A plane for the GSG and BSG in D = 3. 

Our calculations have dealt with the Ising systems but they suggest that the T = 0 
scaling exponent y for quantum Heisenberg spin glasses may depend on the spin 
quantum number S. This is in contrast to what happens in unfrustrated systems 
where there is no S dependence in y. It would be interesting to find out whether 
experimental results suggest any S dependence of the exponents. 

there straight !iaes !e !arger ;,&es of s kAS~fied $he 

we. 

2. Sealing stiffness energy 

In order to study the sensitivity to boundary conditions we consider blocks of A( L+1) 
Ising spins. The parameter A is the transverse area of the sample and L is its length 
in the direction in which differing boundaly conditions are applied. For 2D samples 
considered here we set A = L .  

In the transverse direction, periodic boundary conditions are applied. In the lon- 
gitudinal direction, each of the spins in the first and last columns are fixed randomly 
in one of the ( 2 5  + 1) states. The domain wall is created by turning the spin states 
on one boundary upside down with the spins on the other boundary held fixed. The 
difference in the ground-state energies is denoted hy A E .  Since it can be either 
positive or negative, we define 

as the characteristic measure of the influence of neighbouring blocks on the finite 
block under study. Here, (. . .), denotes the configurational average over samples. 

Our calculations were done using the transfer-matrix method which was general- 
ized from the S = + case, described by Morgenstern and Binder (1980), to higher 
values of S. Our analysis extends the studies of the S = king systems done by 
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Bray and Moore (1984, 1987) and by Cieplak and Banavar (1990) to larger values of 
L and then to S = 1, 4. 2, $, and 3. 

For each system we took 10000 samples into account in the configurational aver- 
age. Figure 2 shows the plot of 6 E versns L on the log-log plane for the GSG in the 
absence of anisotropy term A in the Hamiltonian. The exponent y is given by the 
slope of the line in the figure. The largest linear system sizes L studied for S = $, 
1, 4, 2, :, and 3 were 16, 10, 8, 8, 7, 6, and 5 respectively. Unlike the ferromagnetic 
case, the 'amplitude' of 6E is found to be essentially proportional to Sz. For a better 
comparison of the S = spins 
so that they took values fl, and not i$, The summary of the power law exponents 
obtained is shown in figure 1. 

GSG in ZD Bray and Moore (1984) have obtained the exponent 
y of -0.29 and Cieplak and Banavar (1990) of -0.31. Both of these results were 
based on the linear system sizes L not exceeding 10. Our current value, based on 
significantly larger system sizes is 

y = -0.33 + 0 .03 .  

M S Li er al 

and S = 1 cases in figure 2, we rescaled the S = 

For the S = 

(4) 

I I I 
0.9 

F: 
U 
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Figure 2. The L dependence of b E ( L )  for two- 
dimensional systems with the Gaussian couplings 
and no uniaxial anisotropy. The corresponding spin 
quantum numbers are indicated. The full curves are 
fits to  pmer laws. The spin takes values between 
-S and S except for S = where the values are 
rescaled to il. 

Figure 3. The L dependence of S E ( L )  for WO- 
dimensional S = 1 systems with the Gaussian cou- 
plinga for the indicated values of A/Jo. The dot- 
led curves connect the data p ints  whereas the full 
curves are p e r - l a w  fits. 

When studying the bimodal case we introduced vacancies by setting 20% of the 
exchange couplings to zero. This was done to avoid the spurious odd-L-even-L 
effects on 6E (Bray and Moore 1987, Cieplak and Banavar 1990). Extension of our -... A:-- t.....,.-A r - ln  r..nnnrtr +hot tho nnw-i lsw hehsviniir of L F nlrn remains S,"UIC> "cy",," L) - I" " " ~ W L a  L I I U L  Y L l  y"7.U. .",. "I.... ..VI. "I 

valid in this case and the exponent y = -0.26 f 0.03. Cieplak and Banavar (1990) 
have found an exponential behaviour of 6 E  in the BSG case when A was fixed and 
only L was varied. This could have meant a paramagnetic behaviour at T = 0 but 
no deviations from the power law were observed when A and L varied together. 
Increasing the system size to 16 continues to indicate no deviations. 
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It is interesting to point out that we see no delta-function-like peak at zero defect 
energies in the distribution of A E  even in the bimodal case. We also comment 
that in one-dimensional systems with Gaussian couplings y = -1 for any S that we 
studied. 

We now focus on the S = 1 systems and consider the role of of the anisotropy in 
determining properties of a GSG. Figure 3 shows 6 E  versus L on the log-log plane 
for selected values of A. For all negative and for small positive A the exponent 
y is equal to -0.17 & 0.03. When A / J ,  = 0.8 we get the first indications of 
a modified behaviour: the apparent exponent y becomes -0.19. This exponent 
continues to slide down with growing A; it is -0.20, -0.53, and -0.86 For A/J, 
equal to 1, 1.4, and 1.5 respectively. For still larger A the behaviour could be already 
identified as exponential, as indicated by the dotted lines which connect the data 
points. The straight lines are power law fits. The ground state of the system acquires 
a paramagnetic form since the state with zero spin projection is favoured too much. 
I t  isvery likely that in the region where the apparent power law behaviour is obseived 
but with a y different from -0.17, 6E is actually described by 

, 

6 E ( L )  - e-'It/LY (5) 

with a E exceeding our system size. If so, we conclude that the paramagnetic be- 
haviour at T = 0 sets in around A / J ,  = 0.8. 

3. Migdal-Kadanoff analysis: S = 1 

3. I .  Recursion relafions 

The Migdal-Kadanoff approximation consists of a sequence of decimations and bond- 
moving operations on a D-dimensional Euclidean lattice. This MKRG scheme becomes 
exact for hierarchical lattices such as those shown in figure 4. In this scheme we first 
reduce. b bonds in the series into one effective bond by decimating out spins in the 
middle. We then move the bD-' effective bonds in parallel to Form a hypercubic 
lattice with a lattice constant which is b times larger. As pointed out by Emery and 
Swendsen (1977a, 1977b) the MKRG scheme is ambiguous for S > since various 
combinations of couplings may be considered to constitute a 'bond' and one should 
decide on the best choice. 

Figure 4. Rescaling transformation on a hierarchical lattice corresponding to b = 2 and 
D = 2  
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To illustrate this point we consider a more general random Blume-Emery- 
Griffiths Hamiltonian (Blume et a1 1971) with a biquadratic coupling 

H = - J i j S i S j  - c Ki jS i2Sj2 + AiSiZ (6) 
(4 

where the spin Si takes on values 0, fl, and we consider a uniform A. Since 
S! = Si’ for spin-1 Ising systems, the Hamiltonian (2) can be rewritten in the form 

Here ( j ) ;  denotes a summation over nearest neighbours of site i. The spin- 
spin coupling term in (8) is symmetric in the spin states and has the properly that 
R(Si = S,) = 0. When doing the Migdal-Kadanoff renormalization one monitors 
flows of distributions of J; , ,  K i j ,  and A i .  The choice one has to make here 
is whether to monitor the coefficients in front of SiSj  and S:S,” or in front ol 
(Si - S,)’ and (Sz  - S?)’. Emery and Swendsen have found that the latter choice, 
which requires rearrangement of the Hamiltonian from form (6) to form (7) after 
each rescaling, is the correct one for uniform ferromagnetic couplings. The reason 
is that this MKRG scheme becomes accurate both at high temperatures where the 
coupling itself is weak and at low temperatures where the coupling is strong but in 
the dominant configurations one has Si = S,. Thus in both limits one works with 
small Rs of (8). 

We adopt the Emery-Swendsen prescription to the spin-glass systems and consider 
spins located on sites of hierarchical lattices. Since we deal with random systems the 
transformation from (6) to (7) has to be made locally for each bond. Another 
technical point is how one should split the anisotropy term V(S1)  into bonds to 
get a reasonable account of this term. We take the prescription of Griffiths and 
Kaufman (1982), used to describe effects of a magnetic field, and adopt the following 
approximation. Consider a fragment of a D = 2, b = 2 hierarchical lattice as shown 
in figure 4. We notice that there are MO cathegories of sites. The decimated sites, 
like those with spins SI and S, shown in figure 4, have 2 neighbours. On the other 
hand, the sites with spins SA and S, have, in general, ZD neighbours since one 
combines bD-’ effective couplings on two sides of such spins. It is thus natural to 
postulate that the V-terms on decimated spins come with a weight of and on the 
undecimated sites with the weight of (1/2)D. 

After one rescaling step the coupling between undecimated sites, like A and C 
in figure 4, become Ja,, Kat. Similarly, the renormalized anisotropy constants 
become A i  and Al, respectively. Then J a ,  and K6, are obtained by combining 
renormalized bonds from ZD-’ parallel segments in the block AC. However, to obtain 
AX and Al, one has to combine Z D  contributions coming from decimations in the 
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blocks AC, AD and in the blocks AC and CB respectively. Thus to get a complete 
set of the recursion relations it is neccesary to carry out decimation in three blocks 
AC, AD and CB. 

We now describe the decimation part of the rescaling procedure. Consider a 
segment AiC in the block AC. The index i takes 2D-1 values. After the Emery- 
Swendsen transformation the Hamiltonian HAiC for the segment AiC becomes 

where 

6 ,  = AA/ZD - ( JAi + I C A i ) / 2  

6, = A c / 2 D  - ( J;c + KjC)/2 

". - y I - ( - ' ~ j  T 1 L ~ j  T Jjc T Z L ; C J / L .  E - n I r I rr- I I I r,.. \ I n  

Then the decimation procedure reads 

e x p ( - H A c ( i )  +constant) = Trs,[exp(-HAic)] 

H a c ( i )  = Jac(i)(SA - Sc)'/Z + KAC( i ) (S i  - S;)'/Z 
+ ~ ; ( c , i ) s ; + ~ ; ( ~ , i ) s :  

where the trace Trsi is taken over the states of spin Si. The index i in H i c ( i ) ,  
&(i) and I<ic(i) merely indicates that these quantities are obtained after deci- 
mation over spin S;; A' (C, i) denotes a contribution to the anisotropy on site A 
due io decimation over ai between siies A and C jsimiiariy for AL(A,ijj .  Tie 
expressions for the couplings obtained as a result of decimation are written in the 
appendix. After decimation we obtain the recusion relations in the form 

A" 

20-1  

JAC = J A C C i )  . .  
% = I  
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The symbols A;(D,j) and A&( B,  k )  indicate contributions to the renormalized 
anisotropy at sites A and C due to decimation in the blocks AD and CB. The 
expression of AL(D,j)  and A',(B, k) may be obtained from A L ( C , i )  by making 
the replacements C + D, i + j and C + B , A + C and i + k respectively. 

In a numerical realization of the MKRG scheme we start by generating a pool of 
typically N, = 100 000 exchange couplings Jij. On the microscopic level, we put 
K.. $1 = 0 and take A i  = A but in general we also have a pool of N, biquadratic 
Luup1"Lp *,,U U, I " ,  arlwuuuyy w11s1a111s. 

and anisotropies from the three pools and combine them according to the recursion 
relations (19). (Al)-(A9). The new couplings and the anisotropy constants are col- 
lected into the pools of rescaled couplings. The procedure is continued until the 
pools gather N, elements. 

At each length scale we characterize the distributions of J j j ,  ICij and Ai by the 
means Jav, KaV, A,, and their dispersions uJ,  uK and uA, e.g. 

" -..-, :..-- "̂ .I -z  x i  ^^:^^." ^̂ ^̂ .̂ L̂̂  ..7" .Le.. ---A--?.. .I--... .c. wt: 1IlCll ralluuurly uraw Lllr. coupiiigs 

where (. .) denotes an average over configurations of the couplings in the pools. AU 
of these quantities, as well as k,T,  will he measured here in units of 5,. 

3.2. The phase diagram on the T-A plane 

The phase diagram may be obtained by investigating the scaling properties of the 
mean and dispersion of the couplings as a function of the system size L = 2", where 
n is the number of scaling sleps, for various values of T and A. For both Gaussian 
and bimodal couplings J z J ,  5, = 0. On the other hand, cJ either grows or decreases 
depending on D, T, and A. At any non-zero T the power-law growth in uJ indicates 
the spin-glass behaviour and the exponential decrease points to the paramagnetism. 
The behaviour of uK and uA is similar to that of uJ whereas the behaviour of I<, 
and A,, are different. When uJ increases KaV and A,, decrease monotonically. On 
the other hand, when uJ decreases the mean li, goes to zero but A, approaches 
a fvred negative value in the iteration process. 

For D = 2 and S = 1 there is no finite T = 0 transition for any A, in 
agreement with the transfer matrix calculations. For bimodal couplings JtJ we have 
paramagnetic phase at T = 0 for abitraly A. The ZD system with Gaussian couplings 
is paramagnetic at T = 0 for A > 0 and becomes critical at T = 0 for A < 0. 

The phase diagram for GSG in D = 3 is shown in figure 5. A similar phase 
diagram is obtained for BSG. The paramagnet-spin-glass transition line corresponds 
to the scale invariance of the dispersion U J .  Our calculations show that uK , uA , I<, 
and A, also become scale-invariant on this transition line. At A = 0 the critical 
temperature T, is somewhat lower for GSG (T, = 0.285,) than for BSG (T, = 0.355,). 
These values are approximatly three times lower than those for the S = f l  case (our 
calculations give T, = 0.855, for GSG and 1.135, for BSG) obtained by a similar 
MKRG scheme, The critical values of A, A,, above which the system becomes 
paramagnetic at T = 0 are 0.285, for GSG and 0.385, for BSG. 

.,----.I:-- .L- ---- CLW .I. ---. I P . L ~ + ~ I ,  P L . . . : ~ ~ , ~ ~  1077 r ,io 

Almeida 1982, Mottishaw and Sherrington 1985), the spin-glass-paramagnet transition 
is generally second order but in a certain range A,, < A < Ac2 it becomes first 
order. Furthermore, the phase diagram was predicted to have a toppology that would 
allow a re-entrant behaviour in the Same range of A. As seen in figure 5 our MKRG 

fi-ruurg LU LUG UIC~.II-LICIU urcuiy {vnarah auu L I I I G I I I I I ~ V I I  11, I ,  u a p  uiiu U- 
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Figure 5. ?le temperatureanisotropy phase dia- FIgure 6. ?le dependence of the dispersion of 
g a m  for the S = 1 three-dimensional spin glass the effective exchange couplings on the number of 
with Gaussian couplings is obtained by the Migdal- iterations for a three-dimensional S = 1 system 
Kadanoff method. The critical value of A f JO at with Gaussian couplings. The data points refer 
T = 0 is equal to 0.28. The inset shows the de- to T = 0. Results for S = $ are shown for 
pendcnce of the thermal exponent y~ on A.  comparison. 

scheme does not lead to any re-entrancy which probably means that this feature is a 
mean-field phenomenon. This is confirmed by a recent determination of the T-A 
phase diagram (Hasan et al 1992) by the local mean-field method (Soukoulis et al 
1982, 1983). The local mean-field methods yields no re-entrancy and suggests that 
the spin-glass-paramagnet transition is second order for any value of A. 

The MKRG method used in the present paper also suggests that the phase tran- 
sition is continuous. In order to see this we have calculated the thermal exponent 
yT (Southern and Young, 1977). If this exponent were equal to the spatial dimen- 
sionality D the transition would be first order (Nienhuis and Nauenberg, 1975). We 
find, however, that yT is always much smaller than 3 for D = 3. The exponent yT 
is obtained by following the flow of uJ,  uK,  uA, li, and A, near the transition. 
The exponent yT is found to depend on the anisotropy constant and this dependence 
is shown in figure 5. At the A = A,, yT = 0. For all values of A the thermal 
exponent is smaller than the corresponding S = i MKRG value. For the S = 3 case 
and D = 3 we have obtained yT = 0.32 which agrees with previous result yT = 0.36 
of Southern and Young (1977). (These authors have used the MKRG scheme and 
assumed that the exchange distribution remains Gaussian through the rescalings.) 

Finally, we report that if J i j  is uniform and A i  is random with zero mean the 
system behaves like a uniform system without any anisotropy. 

3.3. The T = 0 scaling exponent y 
We now focus on the details of the behaviour of uJ and of the other scaling quantities 
at T = 0. We first consider results obtained for the 3D case. Figure 6 shows the 
flow of uJ for the GSG for three selected values of A. For A = Jo  we clearly get 
a paramagnetic behaviour. Below a critical A, a power law holds. The exponent y, 
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however, shows a weak dependence on A. This is shown in figure 7 where the ZD 
results are also combined for a comparison. In the MKRG scheme the length scales 
studied can be almost arbitrary. Thus unlike what we have found by the transfer 
matrix method the A-dependence of y seems to be a fallacy of the method and not 
a manifestation of an apparent power law arising due to an insufficient system size. 

1 -0.8 -8 ' ' 
-2 -1 0 1 0 4 8 12 

A /Jo ITERATION 

Figure 7. me dcpendena of the T = 0 scaling Figure 8. Same as in figure 6 but for WO- 
exponent y on A for two- and three-dimensional 
S = 1 systems. The MKRO method applied to 
S = $ spin glasses would yield y = 0.26 and 
-0.24 for the 3~ and ZD GSG respectively. 

dimensional S = 1 systems. 

Both the ZD and 3D exponents are generally smaller than the corresponding S = f 
MKRGvahes for GSG (y = 0.26 in 3D and y = -0.24 in ZD; see for example, Cieplak 
and Banavar (1990)). For A / J ,  = -1.0 and 0.0, e.g. y is equal to 0.11 and 0.04 
respectively. Thus the MKRG approach predicts that the exponent y depends on the 
spin quantum number S, which is in a qualitative agreement with the transfer matrix 
result. As long as A / J ,  < 0.15~ for 3D, GSG is essentially the same as for the BSG 
system. 

In ZD systems there is no finite T transition but in the GSG case there appears to 
be a T = 0 transition from a power law with a negative exponent to an exponential 
decay at A < 0. This is shown in figure 7. Figure 8 shows the flow of uJ for three 
selected values of A. In the BSG case, on the other hand, the MKRG method predicts 
the systems to be paramagnetic at any A,  which is similar to the results obtained by 
the same method for the S = 4 BSG system. This paramagnetism at T = 0 is likely 
to be an artifact of the approximations used (see Cieplak and Banavar 1990). For 
example, the transfer-matrix method, as one can see in section 2, gives y = -0.17 
for 2D BSG. 

3.4. Lower critical dimensional@ 

The procedure to find the LCD is similar to the one used by Caflisch and Banavar 
(1985) to study the S = f spin glasses. We have to combine d, = 2D-1 of decimated 
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bonds, with D allowed to be non-integer, into one rescaled coupling. By trial and 
error we find d, which yields scale invariance. For instance, for the S = 1 and A = 0 
it turns out that we are required to combine 3.78 such bonds at the LCD. Thus we 
combine three decimated bonds with a weight of 1 and take the fourth bond with a 
weight of 0.78. The LCD is found to be lower than 3 for A < A,. For example, we 
find LCD of 2.78 and 2.94 for A = - J o  and 0 respectively. Above A, the LCD is 
greater than 3. Note that for A = 0 the LCD of the S = 1 system is greater than 
that of the S = 3 system (of (2.55)) which was obtained by the same MKRG method 
(Caflish and Banavar, 1985). The transfer-matrix results for D = 2 suggest, however, 
that the LCD of the S = 1 model should actually be lower because the exponent y 
was larger. Thus the tendencies suggested by our MKRG scheme are opposite to those 
determined by the transfer-matrix method. 

~ . . _ _  4. Concluding Remarks 

Results on the frustrated S = 1 Ising systems obtained by the MKRG scheme with 
the use of the EmerySwendsen trick are comparable in quality to those obtained 
for the S = $ glasses. The physics of the S = 1 spin glasses appears to be similar 
to that of the S = $ ones. There is no finite T ordering in two dimensions but 
there is an ordering in three dimensions. An extra degree of freedom, the single-ion 
anisotropy, can modify T, and even bring it down to 0 but it seems that in the short- 
range systems there is no re-entrancy and no first-order transition predicted by the 
mean-field theory. 

The transfer-matrix results, however, point to a new phenomenon: the T = 0 
exponents of frustrated systems depend on the spin quantum number. Furthermore, 
it is possible that half-integer S spin glasses belong to a different branch of the expo- 
nents than the integer S systems. An experimental verification of these predictions 
would be welcome. 
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Appendix 

Expressions of Jic(i), It'i,(i),  A A ( C , i )  and A c ( A , i )  for the S = 1 case are as 
follows: 

Jac(i) = kBT(ln Cl  - I n  X 2 ) / 2  

A&(i) = k,T(ln E, + In X, - In C, - In  E,) 
(AI) 

(A2) 
A A ( C , i )  = k B T ( l n C , + I n C , - I n C ,  - l n C , ) / 2 + [ J i c ( i ) +  Iiic(i)]/2 
AL(A,i) = k,T(ln E, + In C, - I n  E, - In C,)/2[Jic(i) + 1 C i c ( i ) ] / 2  

(A3) 
(A4) 
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